A Review of Fabrication Method of Casting Metal Matrix Composite Materials in Liquid State

Ikhsan Kamandanu, Hadi Pranoto

DOI: https://doi.org/10.37869/ijatec.v6i2.123

Article Viewers

Abstract viewed: 241 times
PDF viewed: 90 times

Abstract


This article reviews the fabrication methods of metal matrix composites (MMCs) in liquid state. Metal matrix composites, especially aluminium metal matrix composites (AMMCs), are widely used in automotive, aviation, and medical industries due to their superior properties such as low density, good wear resistance, and specific strength. Liquid-based manufacturing processes include infiltration, stir casting, centrifugal casting, squeeze casting, vacuum die-casting, compocasting, and rheocasting. Each method offers specific advantages in reinforcement distribution, cost efficiency, and complex shape manufacturability. Infiltration is effective in achieving good interfacial bonding; stir casting is popular because it is simple and economical for mass production; centrifugal casting excels in forming high-density and wear-resistant composites; squeeze casting and vacuum die casting increase the strength and density of composites; while compocasting and rheocasting offer more homogeneous microstructure and grain refinement. This review shows that the selection of method should be based on the specific application requirements and material characteristics to achieve optimum mechanical properties. With improvements in technology and control of process parameters, liquid casting methods offer significant potential for the manufacture of high-performance structural and functional components.

Keywords


casting; Metal Matrix Composites; manufacturing process

Full Text:

PDF

References

R. Thimmarayan and G. Thanigaiyarasu, “Effect of particle size, forging and ageing on the mechanical fatigue characteristics of Al6082/SiCp metal matrix composites,” Int. J. Adv. Manuf. Technol., vol. 48, no. 5, pp. 625–632, 2010, doi: 10.1007/s00170-009-2316-0.

A. Bhowmik et al., “Casting of particle reinforced metal matrix composite by liquid state fabrication method: A review,” Results Eng., vol. 24, no. September, 2024, doi: 10.1016/j.rineng.2024.103152.

M. S. Arab, N. El Mahallawy, F. Shehata, and M. A. Agwa, “Refining SiCp in reinforced Al–SiC composites using equal-channel angular pressing,” Mater. Des., vol. 64, pp. 280–286, 2014, doi: https://doi.org/10.1016/j.matdes.2014.07.045.

S. Baskaran, V. Anandakrishnan, and M. Duraiselvam, “Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique,” Mater. Des., vol. 60, pp. 184–192, 2014, doi: https://doi.org/10.1016/j.matdes.2014.03.074.

G. Singh, S. L.-I. Chan, and N. Sharma, “Parametric study on the dry sliding wear behaviour of AA6082–T6/TiB2 in situ composites using response surface methodology,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 6, p. 310, 2018, doi: 10.1007/s40430-018-1235-0.

S. Chakravarty, P. Haldar, T. Nandi, and G. Sutradhar, “Fuzzy Logic-Based Model for Predicting Material Removal Rate of Machined Cupola Slag-Reinforced Aluminum Metal Matrix Composite BT - Recent Advances in Materials,” B. P. Swain, Ed., Singapore: Springer Nature Singapore, 2023, pp. 167–177.

S. Krizsma, P. Széplaki, and A. Suplicz, “Coupled injection moulding simulation–thermal and mechanical simulation method to analyse the operational behaviour of additively manufactured polymeric injection moulds,” Results Eng., vol. 23, no. July, 2024, doi: 10.1016/j.rineng.2024.102558.

D. Mandal, B. K. Dutta, and S. C. Panigrahi, “Dry sliding wear behavior of stir cast aluminium base short steel fiber reinforced composites,” J. Mater. Sci., vol. 42, no. 7, pp. 2417–2425, 2007, doi: 10.1007/s10853-006-1271-5.

R. Rahmany-Gorji, A. Alizadeh, and H. Jafari, “Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites,” Mater. Sci. Eng. A, vol. 674, pp. 413–418, 2016, doi: https://doi.org/10.1016/j.msea.2016.07.057.

I. Dinaharan, S. C. Vettivel, M. Balakrishnan, and E. T. Akinlabi, “Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites,” J. Magnes. Alloy., vol. 7, no. 1, pp. 155–165, 2019, doi: 10.1016/j.jma.2019.01.003.

K. K. Alaneme and B. U. Odoni, “Mechanical properties, wear and corrosion behavior of copper matrix composites reinforced with steel machining chips,” Eng. Sci. Technol. an Int. J., vol. 19, no. 3, pp. 1593–1599, 2016, doi: 10.1016/j.jestch.2016.04.006.

J. W. Kaczmar, K. Pietrzak, and W. Włosiński, “The production and application of metal matrix composite materials,” J. Mater. Process. Technol., vol. 106, no. 1, pp. 58–67, 2000, doi: https://doi.org/10.1016/S0924-0136(00)00639-7.

C. Zhou, X. Wu, T. L. Ngai, L. Li, S. Ngai, and Z. Chen, “Al alloy/Ti3SiC2 composites fabricated by pressureless infiltration with melt-spun Al alloy ribbons,” Ceram. Int., vol. 44, no. 6, pp. 6026–6032, 2018, doi: https://doi.org/10.1016/j.ceramint.2017.12.212.

R. Gecu, Ş. H. Atapek, and A. Karaaslan, “Influence of preform preheating on dry sliding wear behavior of 304 stainless steel reinforced A356 aluminum matrix composite produced by melt infiltration casting,” Tribol. Int., vol. 115, pp. 608–618, 2017, doi: https://doi.org/10.1016/j.triboint.2017.06.040.

A. J. Cook and P. S. Werner, “Pressure infiltration casting of metal matrix composites,” Mater. Sci. Eng. A, vol. 144, no. 1, pp. 189–206, 1991, doi: https://doi.org/10.1016/0921-5093(91)90225-C.

K. Ponhan, P. Jiandon, K. Juntaracena, C. Potisawang, and M. Kongpuang, “Enhanced microstructures, mechanical properties, and machinability of high performance ADC12/SiC composites fabricated through the integration of a master pellet feeding approach and ultrasonication-assisted stir casting,” Results Eng., vol. 24, no. May, p. 102937, 2024, doi: 10.1016/j.rineng.2024.102937.

T. K. Adelakin and O. M. and Suárez, “Study of Boride-Reinforced Aluminum Matrix Composites Produced via Centrifugal Casting,” Mater. Manuf. Process., vol. 26, no. 2, pp. 338–345, Jan. 2011, doi: 10.1080/10426910903124829.

K. Wang, Z. M. Zhang, T. Yu, N. J. He, and Z. Z. Zhu, “The transfer behavior in centrifugal casting of SiCp/Al composites,” J. Mater. Process. Technol., vol. 242, pp. 60–67, 2017, doi: https://doi.org/10.1016/j.jmatprotec.2016.11.019.

S. Venkatesan and M. Anthony Xavior, “Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes,” Sci. Technol. Mater., vol. 30, no. 2, pp. 74–85, 2018, doi: https://doi.org/10.1016/j.stmat.2018.02.005.

K. Sekar, K. Allesu, and M. A. Joseph, “Mechanical and Wear Properties of Al–Al2O3 Metal Matrix Composites Fabricated by the Combined Effect of Stir and Squeeze Casting Method,” Trans. Indian Inst. Met., vol. 68, no. 2, pp. 115–121, 2015, doi: 10.1007/s12666-015-0520-1.

Y. LI, Q. lin LI, D. LI, W. LIU, and G. gang SHU, “Fabrication and characterization of stir casting AA6061—31%B4C composite,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 26, no. 9, pp. 2304–2312, 2016, doi: 10.1016/S1003-6326(16)64322-4.

B. Abbasipour, B. Niroumand, and S. M. Monir Vaghefi, “Compocasting of A356-CNT composite,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 20, no. 9, pp. 1561–1566, 2010, doi: 10.1016/S1003-6326(09)60339-3.

A. Mazahery and M. O. Shabani, “A comparative study on abrasive wear behavior of semisolid-liquid processed Al-Si matrix reinforced with coated B 4C reinforcement,” Trans. Indian Inst. Met., vol. 65, no. 2, pp. 145–154, 2012, doi: 10.1007/s12666-011-0116-3.

A. Mazahery and M. O. Shabani, “Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 23, no. 7, pp. 1905–1914, 2013, doi: 10.1016/S1003-6326(13)62676-X.

E. A. Elsharkawi, P. G., C. P., and X.-G. and Chen, “Rheocasting of semi-solid Al359/20%SiC metal matrix composite using SEED process,” Can. Metall. Q., vol. 53, no. 2, pp. 160–168, Apr. 2014, doi: 10.1179/1879139513Y.0000000120.

M. O. Shabani et al., “Wear wear properties of rheo-squeeze cast aluminum matrix reinforced with nano particulates,” Prot. Met. Phys. Chem. Surfaces, vol. 52, no. 3, pp. 486–491, 2016, doi: 10.1134/S2070205116030266.

U. A. Curle and L. Ivanchev, “Wear of semi-solid rheocast SiCp/Al metal matrix composites,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 20, no. SUPPL. 3, pp. 852–856, 2010, doi: 10.1016/S1003-6326(10)60594-8.


Refbacks

  • There are currently no refbacks.

Share This Article



Copyright (c) 2025 ikhsan kamandanu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


IJATEC is indexed by the following abstracting and indexing services:


The International Journal of Advanced Technology in Mechanical, Mechatronics and Material (IJATEC)
Institute for Research on Innovation and Industrial System (IRIS)
Jl.Raya Mustika Jaya No 88, Mustika Jaya, Bekasi Kota - 17158
Telp./Fax: +62 815-7499-5509
p-ISSN: 2720-8990
e-ISSN: 2720-9008
www.ijatec.com/index.php/ijatmmm


Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.