Power Production and Drag of Autorotating Cross Cylinder Turbine Models

Rachmadian Wulandana, David Foote, Seth Pearl, Nataniel Ilyayev

DOI: https://doi.org/10.37869/ijatec.v3i1.52

Article Viewers

Abstract viewed: 107 times
PDF viewed: 36 times

Abstract


The autorotation phenomena of bladeless symmetric objects exposed to fluid flow have promised power generation from the kinetic energy of natural water and air currents. Our past experiments on bladeless turbine models suggest non-linear correlation between the flow speed and power production.  This report explores factors such as flow obstacles and turbine’s position that may affect the power generation of such turbines at Reynolds numbers around 10,000 to 50,000. Using a custom-made water flow tank, we tested the power production and generated drag forces of 3D-printed bladeless turbine models under various conditions of flow. Results indicate the significant effect of flow straightener and flow perturbation to the power production.  Additionally, the effects of turbine infill density and flow speed on the generated drag and measured rotation-per-minute (rpm) are reported. The minimal effects from the turbine’s weight and position in the water flow on the power production require further exploration


Keywords


autorotation; hydrokinetic; bladeless turbines; renewable energy, drag

Full Text:

PDF

References

Energy Agency, I. (2021). Review 2021 Assessing the effects of economic recoveries on global energy demand and CO 2 emissions in 2021 Global Energy. Retrieved from www.iea.org/t&c/

Ibrahim, W. I., Mohamed, M. R., Ismail, R. M. T. R., Leung, P. K., Xing, W. W., & Shah, A. A. (2021). Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7, 2021–2042. https://doi.org/10.1016/J.EGYR.2021.04.003

Susilowati, Y., Irasari, P., & Susatyo, A. (2019). Study of Hydroelectric Power Plant Potential of Mahakam River Basin East Kalimantan Indonesia. Proceeding - 2019 International Conference on Sustainable Energy Engineering and Application: Innovative Technology Toward Energy Resilience, ICSEEA 2019, 207–213. https://doi.org/10.1109/ICSEEA47812.2019.8938641

Setiawan, D. (2015). Potential Sites Screening for Mini Hydro Power Plant Development in Kapuas Hulu, West Kalimantan: A GIS Approach. Energy Procedia, 65, 76–82. https://doi.org/10.1016/J.EGYPRO.2015.01.034

Suntoro, A., Hantoro, R., & Nuari, L. S. (2019). Larona hydropower inlet canal flow analysis as potential hydrokinetic energy generation. AIP Conference Proceedings, 2088(1), 030004. https://doi.org/10.1063/1.5095309

Anyi, M., Kirke, B., & Ali, S. (2010). Remote community electrification in Sarawak, Malaysia. Renewable Energy, 35(7), 1609–1613. https://doi.org/10.1016/j.renene.2010.01.005

Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41–50. https://doi.org/10.1016/J.ESD.2021.05.005

Azrulhisham, E. A., Jamaluddin, Z. Z., Azri, M. A., & Yusoff, S. B. M. (2018). Potential Evaluation of Vertical Axis Hydrokinetic Turbine Implementation in Equatorial River. Journal of Physics: Conference Series, 1072(1), 012002. https://doi.org/10.1088/1742-6596/1072/1/012002

Behrouzi, F., Nakisa, M., Maimun, A., & Ahmed, Y. M. (2016, September 1). Renewable energy potential in Malaysia: Hydrokinetic river/marine technology. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.05.020

Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2018). Micro-hydrokinetic turbine potential for sustainable power generation in Malaysia. IOP Conference Series: Materials Science and Engineering, 370(1), 012053. https://doi.org/10.1088/1757-899X/370/1/012053

Badrul Salleh, M., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2019). Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments, 36. https://doi.org/10.1016/j.seta.2019.100554

Yakub, U., Nayeem, S. M., Golammostafa, S. M., & Samrat, N. (2014). An investigation on hydro kinetic energy and analyzing its potentiality in Bangladesh. 2014 2nd International Conference on Green Energy and Technology, ICGET 2014, 45–49. https://doi.org/10.1109/ICGET.2014.6966659

Baruah, A., Basu, M., & Amuley, D. (2021). Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renewable and Sustainable Energy Reviews, 135, 110158. https://doi.org/10.1016/J.RSER.2020.110158

Ali, F., Srisuwan, C., Techato, K., Bennui, A., Suepa, T., & Niammuad, D. (2020). Theoretical Hydrokinetic Power Potential Assessment of the U-Tapao River Basin Using GIS. Energies 2020, Vol. 13, Page 1749, 13(7), 1749. https://doi.org/10.3390/EN13071749

Olatunji, O. A. S., Raphael, A. T., & Yomi, I. T. (2018). Hydrokinetic energy opportunity for rural electrification in Nigeria. International Journal of Renewable Energy Development, 7(2), 183–190. https://doi.org/10.14710/ijred.7.2.183-190

Eme, L. C., Ulasi, J. A., Alade Tunde, A. I., & Odunze, A. C. (2019). Hydrokinetic turbines for power generation in Nigerian river basins. Water Practice and Technology, 14(1). https://doi.org/10.2166/wpt.2019.001

Masud, I. A., & Suwa, Y. (2018). Viability of hydro-kinetic turbine as an alternative for renewable energy harvesting in Nigeria. Proceedings - 12th SEATUC Symposium, SEATUC 2018. https://doi.org/10.1109/SEATUC.2018.8788852

Niebuhr, C. M., van Dijk, M., Neary, V. S., & Bhagwan, J. N. (2019). A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2019.06.047

Kusakana, K. (2014). A survey of innovative technologies increasing the viability of micro-hydropower as a cost effective rural electrification option in South Africa. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.05.026

Henrique da Costa Oliveira, C., de Lourdes Cavalcanti Barros, M., Alves Castelo Branco, D., Soria, R., & Cesar Colonna Rosman, P. (2021). Evaluation of the hydraulic potential with hydrokinetic turbines for isolated systems in locations of the Amazon region. Sustainable Energy Technologies and Assessments, 45, 101079. https://doi.org/10.1016/J.SETA.2021.101079

Bárcenas Graniel, J. F., Fontes, J. V. H., Gomez Garcia, H. F., & Silva, R. (2021). Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel. Energies 2021, Vol. 14, Page 4411, 14(15), 4411. https://doi.org/10.3390/EN14154411

Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., … Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316–321. https://doi.org/10.1016/J.EGYPRO.2017.03.146

VanZwieten, J., McAnally, W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., … Trudeau, M. (2014). In-Stream Hydrokinetic Power: Review and Appraisal. Journal of Energy Engineering, 141(3), 04014024. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000197

Fernandes, A. C., & Bakhshandeh Rostami, A. (2015). Hydrokinetic energy harvesting by an innovative vertical axis current turbine. Renewable Energy, 81, 694–706. https://doi.org/10.1016/j.renene.2015.03.084

Shao, N., Lian, J., Liu, F., Yan, X., & Li, P. (2020). Experimental investigation of flow induced motion and energy conversion for triangular prism. Energy, 194, 116865. https://doi.org/10.1016/j.energy.2019.116865

Soti, A. K., Thompson, M. C., Sheridan, J., & Bhardwaj, R. (2017). Harnessing electrical power from vortex-induced vibration of a circular cylinder. Journal of Fluids and Structures, 70, 360–373. https://doi.org/10.1016/j.jfluidstructs.2017.02.009

Lugt, H. J. (1983). Autorotation. Annual Review of Fluid Mechanics, 15(1), 123–147. https://doi.org/10.1146/annurev.fl.15.010183.001011

Riabouchinsky, D. P. (1935). Thirty Years of Theoretical and Experimental Research in Fluid Mechanics. The Journal of the Royal Aeronautical Society, 39(292), 282–348. https://doi.org/10.1017/s0368393100112039

Rostami, A. B., & Armandei, M. (2017, April 1). Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.11.202

Wulandana, R. (2021). Open Water Flume for Fluid Mechanics Lab. Fluids, 6(7), 242. Retrieved from https://doi.org/10.3390/fluids6070242

Araneo, J., Chung, B. J. B. J., Cristaldi, M., Pateras, J., Vaidya, A., & Wulandana, R. (2019). Experimental control from wake induced autorotation with applications to energy harvesting. International Journal of Green Energy, 16(15), 1400–1413. https://doi.org/10.1080/15435075.2019.1671413

Wulandana, R., Foote, D., Vaidya, A., & Chung, B. J. (2021). Vortex-Induced Autorotation Potentials of Bladeless Turbine Models. International Journal of Green Energy, Accepted 2(Published online Jul 10 2021). Retrieved from https://doi.org/10.1080/15435075.2021.1941044

Chung, B., Cohrs, M., Ernst, W., Galdi, G. P., & Vaidya, A. (2015). Wake--cylinder interactions of a hinged cylinder at low and intermediate Reynolds numbers. Archive of Applied Mechanics, 86(4), 627–641. https://doi.org/10.1007/s00419-015-1051-2

Skews, B. W. (1991). Autorotation of many-sided bodies in an airstream. Nature, 352(6335), 512–513. https://doi.org/10.1038/352512a0

Khan, M. J., Bhuyan, G., Iqbal, T., Quaicoe, J. E., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy, 86(10), 1823–1835. https://doi.org/10.1016/j.apenergy.2009.02.017

Khan, M. J., Iqbal, T., Quaicoe, J. E., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, 12(8), 2177–2193. https://doi.org/10.1016/j.rser.2007.04.016

Vernier. (n.d.). Go Direct® Force and Acceleration Sensor User Manual – Vernier. Retrieved June 7, 2021, from https://www.vernier.com/manuals/gdx-for/

Araneo, J., Chung, B. J., Cristaldi, M., Pateras, J., Vaidya, A., & Wulandana, R. (2019). Experimental control from wake induced autorotation with applications to energy harvesting. International Journal of Green Energy, 16(15). https://doi.org/10.1080/15435075.2019.1671413

Skews, B. W. (1998). Autorotation of polygonal prisms with an upstream vane. Journal of Wind Engineering and Industrial Aerodynamics, 73(2), 145–158. https://doi.org/10.1016/S0167-6105(97)00280-8

White, F. M. (n.d.). Fluid Mechanics (7th ed.). New York: McGraw Hill.

Tang, H., Tian, Z., Yan, J., & Yuan, S. (2014). Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation. Advances in Water Resources, 69, 134–145. https://doi.org/10.1016/j.advwatres.2014.04.006


Refbacks

  • There are currently no refbacks.

Share This Article



Copyright (c) 2022 Rachmadian Wulandana, David Foote, Seth Pearl, Nataniel Ilyayev


IJATEC is indexed by the following abstracting and indexing services:


International Journal of Advanced Technology in Mechanical, Mechatronics and Material (IJATEC)
Institute for Research on Innovation and Industrial System (IRIS)
Jl.Raya Mustika Jaya No 88, Mustika Jaya, Bekasi Kota - 17158
Telp./Fax: +62 815-7499-5509
p-ISSN: 2720-8990
e-ISSN: 2720-9008
www.ijatec.com/index.php/ijatmmm



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.