Design and Wheel Torque Performance Test of the Electric Racing Car Concept E-Falco

Hadi Pranoto, Bambang Darmonoa, Zainal Arifin, Ibnu Susanto


Article Viewers

Abstract viewed: 182 times
PDF viewed: 81 times


To reduce the use of fossil fuels in vehicles and reduce exhaust emissions, it is necessary to use electric vehicle technology. Solidworks software is used in designing and manufacturing an electric car and a simulation is carried out using CFD (Computation Fluid Dynamic) software to determine the strength of the frame structure and air drag when the electric car is running. The performance test of the motor by using the dyno test to determine the acceleration time, power, and torque of the motor. The results of the simulation show that at a speed of 10 km/h the air drag is 6.24 N, a speed of 20 km/h is 24.64 N, and a speed of 40 km/h is 93.92 N. The results of the dyno test shows that the acceleration time with full acceleration from a speed of 0-70 km/h is 13.63 seconds, the maximum power output by the motor is 14.17 hp occurs at a speed of 36-53 km/h and the amount of peak torque released by the motor occurs at a speed of 13 km/h at 228 Nm.


motor; air drag; torque; speed; power

Full Text:



Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia.

Jiang, J., & Zhang, C. (2015). Fundamentals and application of lithium-ion batteries in electric drive vehicles. In Fundamentals and Application of Lithium-ion Batteries in Electric Drive Vehicles.

Larminie, J., & Lowry, J. (2003). Electric Vehicle Technology Explained. In Electric Vehicle Technology Explained.

Huang, C., Lei, F., Han, X., & Zhang, Z. (2019). Determination of modeling parameters for a brushless DC motor that satisfies the power performance of an electric vehicle. Measurement and Control (United Kingdom), 52(7–8), 765–774.

Chau, K. T. (2015). Electric vehicle machines and drives: Design, analysis and application. In Electric Vehicle Machines and Drives: Design, Analysis and Application.

Noor Azreen Bin Hamzah. (2015). Design and Analysis of Space Frame Chassis for. 2018(10), 124–128.

Prihadnyana, Y., Widayana, G., & Dantes, K. R. (2017). ANALISIS AERODINAMIKA PADA PERMUKAAN BODI KENDARAAN MOBIL LISTRIK GASKI ( GANESHA SAKTI ) DENGAN dalam kendaraan adalah bodi kendaraan , dari kendaraan tersebut . Menurunkan Nilai oleh J . Y . Wong dalam bukunya Theory 0f element analysis ( FEA ). Penggun. 226–234.

Brown, W. (2002). Brushless DC Motor Control Made Easy. 1–48.

Kim, S.-H. (2017). Electric Motor. In Electric Motor Control.

Zhang, G., Zhang, H., & Li, H. (2011). The driving control of pure electric vehicle. Procedia Environmental Sciences, 10(PART A), 433–438.

Ramesh, M. V., Rao, G. S., Amarnath, J., Kamakshaiah, S., & Jawaharlal, B. (2011). Speed torque characteristics of brushless DC motor in either direction on load using ARM controller. 2011 IEEE PES International Conference on Innovative Smart Grid Technologies-India, ISGT India 2011.

Ibrahim, A. W., Widodo, T. W., & Supardi, T. W. (2016). Sistem Kontrol Torsi pada Motor DC. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems).

Zhang, X., & Zhou, Z. (2020). Research on Development of Vehicle Chassis Dynamometer. Journal of Physics: Conference Series, 1626(1).

Rashid, M. Z. A., Latif, M. F. A., Othman, M. N., & Sulaiman, M. (2015). Design and Simulation Study of Small Four Wheel Vehicle Chassis for Single Driver. Modern Applied Science, 9(9).

Raghu, T., Prasad, K., Solasa, G., Satyadeep, N. S., & Suresh Babu, G. (2013). Static Analysis and Optimisation of Chassis and Suspension of an All-Terrain Vehicle. International Journal of Engineering and Advanced Technology (IJEAT).

Azharul, F., Dharmanto, A., & Wilarso. (2020). TRAKSI: Majalah Ilmiah Teknik Mesin. TRAKSI: Majalah Ilmiah Teknik Mesin, 20(1), 45–58.

Nath, D. S., Pujari, P. C., Jain, A., & Rastogi, V. (2021). Drag reduction by application of aerodynamic devices in a race car. Advances in Aerodynamics, 3(1), 1–28.

Xue, X. D., Cheng, K. W. E., & Cheung, N. C. (2008). Selection of electric motor drives for electric vehicles. 2008 Australasian Universities Power Engineering Conference, AUPEC 2008, January.

Junaidi, M. V., Mesin, D. T., Teknik, F., & Surabaya, U. N. (2013). RANCANG BANGUN BODI MOBIL LISTRIK GARUDA UNESA ( GARNESA ) The process of manufacturing the body front / cap electric cars using systematics that begins with the manufacture or design of front body cap using Auto CAD , master mold fabrication using lockin. 1–10.

le Good, G., Johnson, C., Clough, B., & Lewis, R. (2011). The Aesthetics of Low Drag Vehicles. SAE International Journal of Engines, 4(2), 2638–2658.

Rahman, M. A. (2013). Pembuatan mobil listrik untuk solusi transportasi ramah lingkungan (mobil baskara). Jurnal Riset Daerah, XII(2), 1819–1837.

Yedamale, P. (2003). Brushless DC (BLDC) motor fundamentals.

Semir Beganović, & Suada Dacić. (2012). Comparison of dynamic characteristics of electric and conventional road vehicles.


  • There are currently no refbacks.

Share This Article

Copyright (c) 2021 International Journal of Advanced Technology in Mechanical, Mechatronics and Materials

IJATEC is indexed by the following abstracting and indexing services:

International Journal of Advanced Technology in Mechanical, Mechatronics and Material (IJATEC)
Institute for Research on Innovation and Industrial System (IRIS)
Jl.Raya Mustika Jaya No 88, Mustika Jaya, Bekasi Kota - 17158
Telp./Fax: +62 815-7499-5509
p-ISSN: 2720-8990
e-ISSN: 2720-9008

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.